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Abstract

We consider the problem of taking an opaque forest and
determining the regions that are covered by it. We pro-
vide a tight upper bound on the complexity of this prob-
lem, and an algorithm for computing this area, which is
worst-case optimal.

1 Introduction

Let a region be any bounded, closed, and connected set
of points in R2. Then a barrier, or opaque forest, of
a finite set R of regions, is any finite set B of closed
and bounded line segments, such that for any line `: if `
intersects R then ` also intersects B. A previously stud-
ied problem is as follows: given some set R or regions,
compute a barrier B such that the length of all the seg-
ments in B, |B|, is minimal. The exact solution to this
problem is not known even for specific cases, such as
when R is a unit square. The best known bounds for
this instance of the problem are 2 ≤ |B| ≤

√
2 +
√

6/2.
[2]

The general problem of computing a minimal bar-
rier for a given set of regions is a very difficult one.
Currently there are no proven algorithms for comput-
ing this precisely, nor even known solutions for specific
cases. For the internally optimal barrier, there is also
no known algorithm. However, by further restricting the
problem, it is reducible to well studied problems. If the
internally optimal barrier is restricted to a single con-
nected component, then this is easily reducible to the
Minimal Steiner Tree Problem. If the barrier is further
restricted to a single polygonal chain, then the problem
is reducible to the Travelling Salesman Problem. Both
of these problems are known to be NP-Hard in general,
but can be much more easily computed or approximated
when the input points are in convex position, which is
the case for this problem [2].

In this paper we consider the following problem: given
some barrier B, compute a maximal set R of regions
such that B is a barrier for R. More precisely, given a
set B of n line segments, compute R(B) = {p ∈ R2 :
every line through p intersects B}. We say that R(B)
is the coverage of B.

We give an algorithm that computes the coverage of
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an opaque forest in O(n4) time. We also provide an
example of an opaque forest whose coverage has size
Ω(n4). Thus, our algorithm is worst-case optimal.

2 Maximal Regions

Let a maximal region of a set P of points be a region
R such that for every point p in R, there exists an open
ball A centered at p such that A ∩R = A ∩ P .

Lemma 1 If a maximal region of R(B) is a line seg-
ment, then that line segment is part of B.

Proof. Assume this is not the case. Then there is some
line segment S ∈ R(B) that is a maximal region, but is
not in B. Therefore all lines that pass through a point
p in S intersect B, and there exists an open ball A of
points around p such that every point q in A that is not
in S has a line ` through it which does not intersect B.

Consider such a point q. The line ` through q that
does not intersect B cannot intersect S, or else the
points it intersects in S are not actually in R(B). We
can select a point q′ such that it is arbitrarily close to p,
and the line `′ must therefore become ever more parallel
to the line S lays on to avoid intersection. Therefore it
must be the case that the line collinear with S intersects
B, but the line `′ that is parallel to S and arbitrarily
close to it does not. Therefore, there must exist some
line segment S′ ∈ B that is parallel to S. Further, there
must be some opaque forests to the left and right of S
that do not meet each other or S′, or else ` can pass
through S. Therefore, there is a space for parallel lines
to the left and right of S. However, this implies that
there is a line `′′ that enters through one space and exits
through the other which does not intersect B but passes
through S, which means there are points in S which are
not in R(B). If this were not the case, then `′ would
intersect B. So we have a contradiction, therefore if S
is in R(B), S is in B. �

Lemma 2 R(B) may contain maximal regions that are
single points, but are not part of B.

Proof. Consider the construction of three line segments
found in Figure 2.
p is not part of B. Every line that passes through p

intersects B, so p ∈ R(B). Yet there exists an open ball
of points centred at p such that every point in this ball
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Figure 1: There is a line `′′ which does not intersect
B but passes through S

p

Figure 2: A construction that creates a maximal re-
gion that is exactly one point

except for p has a line through it that does not intersect
B. Therefore p is a maximal region of R(B). �

3 Clear and Blocked Points

Let a blocked point be a point p with respect to some
barrier B such that for every line ` which passes through
p, ` intersects B. Then a clear point is a point which
is not blocked. Every point of B is a blocked point.
Moreover, R(B) is the set of all blocked points with
respect to B, and the complement R(B) or R(B) is the
set of all clear points.

Theorem 3 For every barrier B, each maximal region
C ⊆ R(B) is the intersection of halfplanes defined by
lines that pass through two vertices of B.

Proof. Assume there exists some line ` which is tangent
to the boundary of a maximal region C ⊆ R(B), but `
does not touch B. Then, because the complement of B
is an open set, ` can be translated to intersect C without
intersecting B. However that would mean C contains
clear points, which is a contradiction. Therefore, ` must
be tangent to B at at least one point. Now assume
` is tangent to B at exactly one point. Then ` can
still be rotated around the point of tangency, once more
intersecting C. This once more contradicts the fact that
C is a subset of R(B). Therefore ` must be tangent to
at least two points of B. Further, since B is a set of line
segments, only the end points of these segments need
be considered, as tangency to a line segment is simply
tangency to its two end points. �

Remark that this also implies that we need only
finitely many halfplanes to define a maximal region of
R(B), and that every maximal region of R(B) is convex.

C

B

C

B

``

Figure 3: The line ` must be tangent to B at two
vertices, if it defines the boundary of part
of R(B)

4 Connected Components

B is a set of n line segments consisting of m connected
components B1, . . . , Bm. Further, Conv(Bi) is the con-
vex hull of the connected component Bi. Then for some
point p ∈ R2, we define Lp(Bi) as follows:

1. If Bi is a single line segment, and p is collinear to
Bi, then Lp(Bi) = ∅

2. Otherwise, if p lies on a vertex of Conv(Bi), then
Lp(Bi) is the double-wedge defined by the lines of
the two edges of Conv(Bi) that meet at p.

3. Otherwise, if p lies inside Conv(Bi), or on its
boundary, ∂Conv(Bi), then Lp(Bi) = R2

4. Otherwise, Lp(Bi) is the double-wedge defined by
the tangents of Conv(Bi) that pass through p.

Lp(Bi)

Bip

p

Bi

Lp(Bi)

p Bi

Lp(Bi)

p
Lp(Bi)

Bi
1. 2.

3. 4.

Figure 4: Various possible cases for Lp(Bi)

Intuitively, Lp(Bi) can be thought of as the set of all
lines that pass through p and intersect Bi. However this
is not strictly true. For parts (3) and (4) of the defini-
tion, this does in fact hold. However, (2) describes the
limiting behaviour of a point as it tends towards a vertex
of Conv(Bi) from outside. (1) ignores the behaviour of
points collinear to a single disjoint line segment. This
definition may seem counter-intuitive, but it is useful
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for us. Further, we will consider Lp(Bi) to be a subset
of R2, and not the actual lines that pass through p.

Lemma 4 Every point in Lp(Bi) ∪Bi is a clear point
with respect to Bi.

Proof. In case (1), where Bi is a single line segment
and p is a point collinear with it, this follows trivially,
as R(Bi) = Bi. Therefore, even though Lp(Bi) = R2,
the only points that aren’t clear are those of Bi it-
self. In case 2, where p is a vertex of Conv(Bi),
Conv(Bi) is completely contained within Lp(Bi). Since

R(Bi) = Conv(Bi), Lp(Bi) ∪Bi can’t contain a blocked
point. In case (3), where p lies inside of or on Conv(Bi)
this also follows trivially, as Lp(Bi) is empty. In case
(4), where p lies outside of Conv(Bi), Conv(Bi) is once
again completely contained within Lp(Bi) and there-

fore, Lp(Bi) ∪Bi can’t contain a blocked point. There-

fore Lp(Bi) is a set of clear points. �

We now define Lp(B) =

m⋃
i=1

Lp(Bi) to be the set of

all lines which intersect B and pass through p, ignoring
previously established special cases.

pB

Lp(B)

Figure 5: Lp(B) is the set of all lines that intersect
B and pass through some point p

Since Lp(Bi) ∪Bi is a set of clear points with respect

to Bi, we can further conclude that Lp(B) ∪B has this
property with respect to the whole of B. Further, for
some points r and s, since Lr(B) ∪B and Ls(B) ∪B
have this property, Lr(B) ∪B∪Ls(B) ∪B also has this
property. By DeMorgan’s law for set compliments, we
can also conclude that (Lr(B) ∩ Ls(B)) ∪B has this
property as well. Therefore given

L(B) =

m⋂
i=1

⋂
p: vertex of Conv(Bi)

Lp(B)

we know L(B) ∪B is a set that also has this property.

Theorem 5 Let CI be the closure of the interior of a
set of points, then CI(L(B)) ∪ B ⊆ R(B) ⊆ L(B) ∪ B.
Further, R(B)\(CI(L(B))∪B) is a finite set of disjoint
points.

Proof. Since R(B) is the set of all clear points with
respect to B, and L(B) ∪B is a set of some clear
points with respect to B, R(B) ⊇ L(B) ∪B. There-
fore, R(B) ⊆ L(B) ∪B.

From Lemmas 1 and 2, we know that the only
zero area maximal regions of R(B) that aren’t in B
are individual points. Remark that CI(L(B)) dif-
fers from L(B) in that only the zero area maximal
regions of L(B) have been removed. Therefore, if
CI(R(B)) = CI(L(B)), (CI(L(B)) ∪ B) ⊆ R(B), and
all that R(B) and CI(L(B)) may differ by are dis-
joint points. Since R(B) ⊆ L(B) ∪ B, and B has
zero area, CI(R(B)) ⊆ CI(L(B)), so all that remains
to be proven is CI(L(B)) ⊆ CI(R(B)). Equivalently,
CI(R(B)) ⊆ CI(L(B))

Assume some postive-area region P of points is in
CI(R(B)). Consider a point p ∈ P . There is some
line ` through p that does not intersect B. Then ` can
be rotated around p without intersecting B until it is
tangent with some connected component Bi at some
point p′. We will call this rotated line `′. Now if p /∈
CI(L(B)), then there exists some Lp′(Bj), j 6= i, which
p is in. This would mean there is some line `′′ through
p and p′ such that `′′ intersects Bj .

P
p

`

`′p′
Bi

Bj

Lq(Bj)

q

Figure 6: There exists some Lp′(Bj), j 6= i, which p
is in

However `′′ is `′, and if `′ intersects Bj then there
are three possibilities. Either ` intersects Bj , we should
have stopped at Bj before we got to Bi, or `′ is tan-
gent to Bj as well. For the first two cases we have a
contradiction, so `′ must be tangent to Bj . However,
since p is part of some region with positive area, we
may take a point p′′ /∈ `′ adjacent to p such that it lies
on no such tangent, and for which this case is therefore
not possible. Therefore p′′ ∈ CI(L(B)) or else there is
a contradiction. Remark that this argument holds for
any choice of p′′ that does not lie on a tangent between
two connected components. If the points on these tan-
gents were not in CI(L(B)) this would imply a region
of zero area exists in CI(L(B)), but this is impossible.
Therefore all points around p must be in CI(L(B)), and
therefore p must be as well. Therefore, if p ∈ CI(R(B)),
p ∈ CI(L(B)), and therefore CI(L(B)) ⊆ CI(R(B)).
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Since CI(R(B)) = CI(L(B)), R(B) \ CI(L(B)) is a
set of disjoint points. To prove that there are finitely
many points, recall that by Theorem 3 each maximal
region of R(B) is an intersection of halfplanes defined
by the vertices of B. The only way to get a point from
this process is where three or more halfplane boundaries
intersect at a point. Since there are finitely many ver-
tices and therefore finitely many halfplanes, it follows
that there are finitely many points. �

5 Computing the Coverage of a Barrier

Theorem 5 provides a procedure for computing R(B).

We will assume our input is given as a list B of
m connected components B1, . . . , Bm, totalling n line
segments. The first step of our algorithm will be to
compute the convex hulls of all m components. Next,
for each vertex pk of each Conv(Bi), we will compute
Lpk

(Bj) for each Conv(Bj), and union together these
Lpk

(Bj) into Lpk
(B) by sorting them by angle. Then

we will construct an arrangement using all the lines of
the Lpk

(B). We can then determine our final result
by determining how many Lpk

(B) one cell is part of,
and then traversing the dual while changing our count
according to whether a given edge exits or enters an
Lpk

(B). Then we simply output those regions which
were in every Lpk

(B), as well as B itself. However this
process returns CI(L(B))∪B, so we may still be missing
a finite number of points.

To compute these points, recall that they must lay at
the intersection of 3 or more halfplanes. While this is
necessary, it is not sufficient. The only way we know
of to be certain a point is in R(B) is to perform a ra-
dial plane sweep on B from that point. Since there
are O(mn) lines in the arrangement, there are O(m2n2)
candidate points. We will consider a line ` that makes
up the arrangement. There are O(mn) points of in-
tersection on this line. First we will perform a radial
plane sweep on one of these points p to construct a set
Θ = {θ1, . . . , θk} of points on the interval 0 to π, where
each point θi represents the angle of a tangent to some
Bj from p, and each point is labelled with the number
of connected components the line through p at the angle
θi + ε intersects. If every θi is labelled with a non-zero
value, then p ∈ R(B) and we return it. Now consider
the intersection point q on ` that is adjacent to p. While
most of the exact values of Θ will change, the ordering
and labelling of the points will only change for those
related to the tangents that bound this segment of `.
We can store this data in the vertices of the arrange-
ment during construction, so we can just query p and q
for this information. By updating just these values and
checking if any are now labelled with 0, we now know if
q is in R(B). Repeating this process for all the points on
`, and then for all choices of `, we will have determined

all the points in R(B).

Computing the convex hulls will take O(n log n) time.
Computing Lpk

(Bj) requires computing two lines. In
all the special cases this takes constant time, however
in the case where we must actually compute the lines
as tangents, we take O(log n) time to binary search
Conv(Bj)’s vertices for the most extreme points. Since
there are O(m) Bj , it takes O(m log n) time to compute
them all for one pk. Further, to union them together
into Lpk

(B), we need to sort their lines by angle, which
will take O(m logm) time. Since there are O(n) pk, we
take O(nm(log n + logm)) time to compute them all.
Since we now have O(nm) lines from all our Lpk

(B),
our arrangement will take O(m2n2) time to compute,
whose dual we can navigate in O(m2n2) time.[1]

For each line of the arrangement we take at most
O(m2) time to perform the plane sweep of the first
point. Then for each other point, there are an amor-
tized O(1) other lines intersecting at this point, and we
do O(1) work per intersection, so we do O(mn) work
per line. Therefore this step takes O(m2n2) time.

Therefore our algorithm runs in O(m2n2) time. Now
we must determine whether this is good or not.

Since m is at most n, our algorithm will run in O(n4)
time in the worst case. Consider the following barrier:
Take a regular n-gon, and shrink all the edges by a
small amount, so that there are gaps where the vertices
were. Now there are small regions of space where lines
can travel between each pair of vertices. These regions
are equivalent to the planar embedding of Kn. This
partitions the space into Θ(n4) convex regions [3]. So
to even write the output it would take Ω(n4) time and
space. Therefore, our algorithm is indeed worst-case
optimal.

Figure 7: The worst known case barrier and its cov-
erage

6 Deciding Whether a Point is Part of a Barrier’s
Coverage

Given a barrier B one can fairly simply determine
whether a point p is in R(B) in O(n log n) time and
O(n) space using a plane sweep. However if R(B) is al-
ready constructed, point queries can be done in O(log k)
time using a structure that takes O(k2) extra space and
O(k2 log k) time to construct [4], where k is the number
of edges in R(B).
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